Small, high specific Energy Power Sources for Medium Caliber Fuzes

57th Annual Fuze Conference
July 30th, 2014
Harald Wich
Diehl & Eagle Picher GmbH
Overview

- Terminology
- Fuze Power Requirements
- How much is this
- Specific Densities
- What’s around
- Conclusion and Future Work
Terminology

- The Electric Circuit

- Voltage [V] x Current [A] = Power [W]
- Current [A] x Time [s] = Capacity [As, Ah]
- \[\frac{\text{Power [W]}}{\text{Energy [Wh]}} \text{ or } \frac{1}{\text{Discharge Time [h]}} = \text{C-Rate} \]
What is needed for a Fuze

- Power/Energy Requirement depends on
 - Complexity of Fuze
 - Igniter Circuit
 - Functions
 - Speed
 - Component Selection
 - Design
 - Flight Time

Hear more in # 16521
What is needed for a Fuze

- Legacy Large Caliber Fuzes
What is needed for a Fuze

- New Medium Caliber Fuzes
How much is that

- A few comparisons
Specific Densities

- Why is that so important to you?
 - Power Sources are characterized by capacity
 - Per weight
 - Per volume
 - Fuzes are usually restricted by volume
Specific Densities

- **Energy vs Power**
 - Beta Batt
 - Energy: 40 J / mm³ → very high
 - Power: 125 nW / mm³ → very low
 - ELDC
 - Energy: 4 mJ / mm³ → low
 - Power: 125 mW / mm³ → high

Example: LTC-Primary Battery
Specific Densities

- **C-Rate**
 - Tesla Roadster 56 kWh (≈ 200 MJ), max Power 215 kW → 4 C
 - Fuze Battery Large Cal (e.g. 500 J) 200 s (≈ 1/20 h) → 20 C
 - Medium Cal (e.g. 5 J) 20 s (≈ 1/200 h) → **200 C**!

⇒ If the Battery can manage only 4 C (like a Tesla Roadster)
 it needs 50 times the Capacity the Fuze requires!
What’s around

- Legacy

„Baghdad Batterie“
250 BC

„Patent K. STAMM“
1925

„Duracell AR-13D“
1971
What’s around

- Capacitors
 - Power Density
 - Energy Density: J/mm^3
 - How to charge
- Set-Back Generators; Piezo; Electromagnetic
 - Power Density
 - Energy Density: $< 10 \mu J/\text{mm}^3$
 - Short Pulse only
What’s around

- Fuze Batteries miniaturized

DEP-14103
- 3 J; 3 mJ/ mm³
- 50 mW
- Ø 11 mm; h 11 mm

DEP-14104
- 10 J; 7 mJ/ mm³
- 75 mW
- Ø 10/11 mm; h 10/13 mm

DEP-14202
- 100 J; 50 mJ/ mm³
- 500 mW
- Ø 10/20 mm; h 3/11 mm
What’s around

- A novel solution

 - Converter + Heat Source

 Thermo Electric Generator

 in barrel heating
 aerodynamic heating
 pyrolants (fuel)

\[
\eta_{\text{Max}} = \frac{T_{\text{hot}} - T_{\text{cold}}}{T_{\text{hot}}} \cdot \frac{\sqrt{1 + Z_M \cdot \bar{T}} - 1}{\sqrt{1 + Z_M \cdot \bar{T}} + \frac{T_{\text{cold}}}{T_{\text{hot}}}}
\]

\[
E = \int_0^\infty P(t)
\]
What’s around

- **TEPS**
 - High Energy Density Fuel 4 J/mm^3
 - High burning Temperature
 - Independent of operating Temperature ($\Delta \varphi$-principle)
What’s around

- **TEPS**
 - Max Power at Start
 - Longer Power than Set-Back
 - Easy charge of
 - Small capacitor
 - High Energy Density
 - Independent of Spin
What’s around

- **TEPS**

DEP-15001

- 100 mJ; 100 μJ/mm3
- 100 mW
- Ø 12.6 mm; h 12.5 mm

DEP-15030

- 200 mJ; 120 μJ/mm3
- 200 mW
- Ø 17 mm; h 12.5 mm

DEP-15060

- 2000 mJ; 650 μJ/mm3
- 1000 mW
- Ø 23.6 mm; h 12.5 mm

- Easy to scale Voltage, Energy, Life-Time, Size
Conclusion and Future Work

+ Two new Product Lines of small Fuze Power Supplies
+ Meet all known Requirements
+ Significant increased Energy Density
+ Excellent Power Density
+ Spinning and Non-Spinning

• Future work
 • Manufacturability
 • Live-Firing
 • Qualification
Thank you for your attention!

Questions?
Diehl & Eagle Picher Contact

- How to Contact us
 - Presenter: Harald Wich
 - Mail: Diehl & Eagle Picher GmbH
 Fischbachstrasse 20
 90552 Roethenbach a d Pegnitz
 Germany
 - Phone: +49-911-957-2073
 - Fax: +49-911-957-2485
 - Email: harald.wich@diehl-eagle-picher.com
 - Web: www.battery.de