

# "Lead is Dead"



58<sup>th</sup> Annual Fuze Conference July 9<sup>th</sup>, 2015 Harald Wich Diehl & Eagle Picher GmbH

### **Overview**



- History
- From Lead to Lithium
- MK44
- PS115
- Others
- Opinions
- Conclusions

# **History**













LONG ENERGIZER MK 5 MOD 2

### Lead Reserve Battery

### WW2 Prox Fuze (VT-Fuze)



### From Lead to Lithium



- Lead Batteries were good for about 50+ years (despite some weaknesses)
- invention/development of the Lithium Battery started ca 1912
  - first commercial lithium primaries sold in 1970s
- US started MK44 (lead) replacement programme (2004 NDIA Fuze Conference, Eugene Marquis)

1996



# Why Change from Lead to Lithium?



- poor low temperature performance
- growing environmental concern (not a big issue in 1996, but ...) (2004 NDIA Fuze Conference, Paul F. Schisselbauer)
- MK44 Lead-Chemistry Battery non-producible within the US (2001 NDIA Fuze Conference, Michael A. Till; 2004 NDIA Fuze Conference, Paul F. Schisselbauer)

# "Lead is Dead"

(2005 NDIA Fuze Conference, Eugene Marquis)

# The Way from Lead to Lithium



 various attempts to upgrade MOFA-Battery - more cells, high-rate electrolyte, to fulfil MK44 requirements within envelop

| Time    | Voltage | Current |
|---------|---------|---------|
| (msec)  | (v)     | (mA)    |
| 0       | 0       | 0       |
| 50      | 12.5    | 60      |
| 99.9    | 12.5    | 60      |
| 100     | 12.5    | 450     |
| 140 sec | 12.5    | 450     |





 "After several years and several million dollars, still not sufficiently successful" (2008 NDIA Fuze Conference, Jeff Swank)

# Our DEP14017 as MK44 Replacement





### MK 419



D&EP's DEP14017 successfully introduced into US MK419



# **Our next Step**

# DIEHL & EAGLE PICHER

#### Batterie-Systeme



| •   | Height [mm]                |
|-----|----------------------------|
| •   | Diameter [mm]              |
| •   | Weight [g]                 |
| •   | Voltage max [V]            |
| •   | Voltage min [V] *          |
| •   | Current [mA] peak *        |
| •   | Capacity/Lifetime [mAs/s]  |
| •   | Activation Time [s] @ 23 V |
| •   | Acceleration [g´s]         |
| •   | Spin [rpm]                 |
| •   | Temperature [°C]           |
| •   | Environment                |
| * ( | Customer defined           |

| 3/5 |  |
|-----|--|
| 5   |  |

| DEP14012     | PS-115    |
|--------------|-----------|
| 25.33        | < 25.7    |
| 32.17        | < 38.96   |
| 40           | < 78      |
| 28.8         | < 36      |
| 20           | > 20      |
| 250          | 250       |
| 60,000/200   | 6,000/200 |
| 0.1          | < 1       |
| 1000         | > 1100    |
| 2,700        | > 2,700   |
| -46 - +63    | -40 - +60 |
| MIL-STD 883B |           |



### The DEP 14012 Activation



unique activation device

### no activation



# **Some More Examples of Lead Batteries**





PX-20

| Activation time       | Battery will get activate /generate voltage when subjected to<br>specified Acceleration & Spin.  Maximum 200 msec. for 14V under 15 mA load                                                                              |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nominal Voltage level | ISVoits at Ambient temp under 15mA load Just after the activation time along all the specified duration the battery voltage with a current of 15mA, shall not be less than 14 volts [-40°C) not higher than 25v (+80°C). |
| Nominal Current level | 15mA under 1K Ω load                                                                                                                                                                                                     |
| Operating Time        | Operating Time from Activation till Voltage drops below 14V shall be not less than 15 sec                                                                                                                                |
| Operating Temperature | -40°C to +60°C                                                                                                                                                                                                           |
|                       |                                                                                                                                                                                                                          |



|   |                     | PX-20             | DEP14203  |
|---|---------------------|-------------------|-----------|
| • | Voltage max [V]     | < 18              | ✓         |
| ٠ | Voltage min [V]     | BATTERY PARO > 14 |           |
| • | Current [mA]        | FOR PUZE PR-40    | APTS      |
| • | Activation Time [s] | @ 14 V < 0.2      | 0.01      |
| ٠ | Acceleration [g's]  | > 25,000          | 100016#   |
| • | Spin [rpm]          | > 40,000          | ✓         |
| • | Temperature [°C]    | -40 - +60         | -46 - +63 |
|   |                     |                   |           |



diameter d = 22 mmheight h = 14/19.5 mm









|   |                     | MRB           | DEP14204  |
|---|---------------------|---------------|-----------|
| • | Voltage min [V]     | > 30          | ✓         |
| • | Current [mA]        | 10            | ✓         |
| • | Activation Time [s] | @ 14 V < 0.05 | 0.01      |
| • | Temperature [°C]    | -32 - +60     | -46 - +63 |
| • | Environment MI      | L-STD 331B    | ✓         |

Sang-Hee Yoon \*, Joong-Tak Son, Jong-Soo Oh Journal of Power Sources 162 (2006) 1421–1430

## **Obsolete Opinions about Lithium Reserve Batteries**



- widely heard quotations:
  - Lead has a higher energy density (capacity) per volume. \*
  - Lead is more powerful per area cell surface. \*\*
  - Lead is faster \*\*\*
- the truth for lithium:
  - High cell voltage usually results in high energy density
  - Proper cell design and electrolyte results in high power
  - Proper cell- and flow-design results in fast activation

up to 100 mJ/mm3

more than 200 mW/cm2

two examples

#### Diehl/Eagle Picher Conclusion

- Meets Fit, Form, & Function of MK44
  - Limited mechanical repackaging of fuze
  - Rise time same as MK44
- Need to test 5x2 battery
  - To determine if Mission Life Requirement would be met



- 2008 NDIA Fuze Conference, Jeff Swank
- 2002, 2004, 2005 NDIA Fuze Conference, Till, Marquis Sang-Hee Yoon \*, Joong-Tak Son, Jong-Soo Oh Journal of Power Sources 162 (2006) 1421-1430

**DEP 1400x** at RT



# **Obsolete Opinions about Lithium Reserve Batteries**



more on lithium rise time



Lithium Reserve Batteries activate quickly if properly designed!

### Conclusion



- Lead Batteries can be substituted by a Lithium plug-in-replacement in most cases. In some applications a cylindrical Li-battery is the more favourable solution
  - long shelf live due to
    - glass ampoule
    - tightness
  - superior low temperature performance
  - high energy/power density
  - fast rise-time





# Thank you for your attention!

Questions?

# **Diehl & Eagle Picher Contact**



How to Contact us

Presenter Harald Wich

Mail Diehl & Eagle Picher GmbH

Fischbachstrasse 20

90552 Roethenbach a d Pegnitz

Germany

Phone +49-911-957-2100

+49-911-957-2485

Email harald.wich@diehl-eagle-picher.com

Web www.battery.de